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Abstract: The collection of information regarding biodiversity and habitat mapping for IA studies on large projects 
is more and more demanding, especially in the context of remote areas. Remote Sensing can assist Impact 
Assessment (IA) in extracting useful information by providing a synoptic view of habitats distribution in space and 
time. Remote sensing was applied to map land cover and habitats in a remote area of Subtropical Africa to inform a 
study of Biodiversity and Ecosystem Services. The habitat mapping was based on a supervised classification of 
multi-temporal Landsat imagery for an overall area of about 20,000km2. The classification was driven and validated 
through ground truths collected by ecologists. The overall accuracy was determined to be more than 80%. The 
resulting habitat map played an important role throughout the study, including mapping of habitat status and 
sensitivity (based on IFC categories of modified, natural and critical), demonstrating differential rates of habitat 
change over time prior to project development, and providing a basis for discussion with engineers on assessment of 
alternatives. This study demonstrated the value of a combination of fieldwork and Remote Sensing as a reliable and 
cost-effective approach in representing habitat type and status for a large area that couldn’t be adequately surveyed 
by field effort alone. 

1 Introduction 

In the framework of Environmental Impact Assessment studies, the need for synoptic, harmonized, 
and cost-effective baseline data has been all along a crucial issue. Fieldwork campaigns cannot always 
provide complete information due to sampling extension, HS, time and costing [1]. Remote Sensing is 
increasingly recognized as a reliable and cost-effective tool for environmental baseline data collection [2]. 
In this paper we describe an approach based on the synergic use of field surveys and Remote Sensing 
analysis in a study on Biodiversity and Ecosystem Services (BES) for a proposed linear infrastructure of 
about 250km in Africa. The overall study was required in compliance with IFC Performance Standards 6 
[3].  

The project area occupies a strip of coast of about 20,000km2 characterized by a typical subtropical 
climate with wet and dry seasons. Frequent and widespread floods in the wet season and poor road 
network restricted access to roughly 50% of its extent. A Land Cover classification map was extracted 
from multitemporal Landsat data and field ground truths. This map drove the two fieldwork campaign 
performed. The collected ground truths were successively used to refine the classification. The study 
aimed at creating a Habitat Map in compliance with IFC Standards as well as providing information 
concerning Habitat changes and potential Alternative Assessment. 

2 Ground Data Collection 

Prior to fieldworks we performed a desktop study in order to find available ground truths for habitat 
mapping belonging to former conservation projects*. A preliminary aerial survey was performed on 
November 2013 to provide an overview of the study area. A 13 days wet season survey was undertaken 
by the ecology team on February 2014. The survey was affected by significant detour requirements 
around flooded areas. The dry season survey took place at the beginning of September 2014. Overall, the 
20-25% of the proposed infrastructure layout was not surveyed. Rapid habitat assessment and vegetation 
                                                 
* Due to confidentiality reasons the information sources cannot be cited herewith.  
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type identification were performed at 142 locations (63 locations in the wet season and 79 in the dry 
season). 

Detailed plot sampling was performed in representative habitats, providing 49 sampling locations (33 
in the wet season and 7 in the dry season). 42 threatened species were recorded based on IUCN Red List 
[4]. 22 species resulted Vulnerable, 10 Endangered, and 2 Critically Endangered. Nearly all threatened 
species resulted to belong to Coastal Dry Forest (CDF) habitat. 

Ecologists performed Large Mammals, Birds, Herpetofauna, Aquatic, and Ecosystem Services surveys 
during both the campaigns. Based on recorded data, ecologists characterized the habitat prioritization 
according the IFC Standards. 

3 Remote Sensing Data Collection and Preprocessing  

Given the dimension of the study area (~20,000km2) and the scope of work, Landsat data were 
selected: six to eight multispectral bands among Visible, Near Infrared, and Short Wave Infrared 
wavelengths with 30m pixel size and an overall image coverage of 32,400km2. Landsat archive offers a 
global time series of about 40 years, and each image is available free of cost. To entirely cover the study 
area, two satellite frames were required. Five suitable image pairs were collected from the USGS archive 
between 1999 and 2013. We collected an adjunctive image from 2008 to evaluate flood extent of the main 
river system (Table 1). The images were converted into Top-of-Atmosphere Radiance [5] and mosaicked. 
Each image pair was recorded consecutively along the same flight line with a delay of few seconds. No 
major radiometric differences were detected within each pair; hence the mosaicking procedure did not 
require advanced radiometric calibration. 

 
Table 1 – Selected Landsat imagery from sensors 5, 7 and 8 (SLC off: after L7 Scan Line Corrector failure). 
Acquisition Date Sensor Season Cloud Coverage 

1999/12/07 L7 Dry season 25% 
2003/04/22 L7 Wet Season 5% 
2006/06/25 L5 Wet season 2.5% 
2013/05/25 L8 Wet season 20% 
2013/08/31 L8 Dry season 15% 
2008/02/25 L7 (SLC off) Wet Season 10 

4 Remote Sensing Analysis 

For the image classification, we adopted the Maximum Likelihood algorithm, one of the most robust 
parametric methods for supervised classification. It calculates a-priori probability function of membership 
based on variance and covariance values extracted from the training samples provided by the user, and 
assumed to be normally distributed. This function is then used to classify each pixel in the image [6,7].  

Prior to fieldworks, we performed a first classification run using existing information on habitat 
distribution and ground truths from previous conservation projects after the validation of the ecology 
team. A total of 18 land cover classes were derived (Figure 1 – Detailed Land Cover). The classification 
followed a step-wise process in order to extract all the target classes. The first step was performed on the 
images recorded during wet season. The L8 image from 2013 was used as basis, while the other two 
images (L5 from 2006 and L7 from 2003) were used to overcome the presence of clouds in the L8 frame. 
During the first step we ignored a few classes identified by ecologists, such as Riparian Vegetation, and 
the different Woodland and Open Woodland types.  

Secondly, we attempted to differentiate Woodland and Open Woodland into Miombo, Acacia, and 
Mixed by exploiting the higher plant vigor in the dry season of Miombo compared to Acacia [8]. 
Agricultural land was extracted from all five images, and then merged together, assuming that there was 
no agriculture loss in time. This procedure avoided the misclassification between vegetated crops and 
other vegetated classes like Grassland. Riparian Vegetation was extracted from the 2013 dry season 
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image using NDVI (Normalized Difference Vegetation Index – ratio between the difference and the sum 
of Near Infrared and Red bands) [9]. This approach exploited the considerably higher chlorophyll content 
of this class in dry season due to the presence of adjacent water bodies. Pans/lakes were detected using an 
NDWI (Normalized Difference Water Index), calculated as per the NDVI with the Green band replacing 
the Red one [9]. An existing detailed GIS polygon layer was used to map settlements. Within each 
polygon, every pixel not assigned to non-vegetated class was flagged as “Settlement”. This map was 
mainly used for identifying field survey locations. 

 
Figure 1 – Overall extent of the study area, intermediate and final products of Remote Sensing analysis. 

 
 
After field surveys, we performed a second round of classification, using the 142 ground truths from 

the rapid habitat assessment. The same step-wise approach described above was applied, except for the 
subdivision of Woodland and Open Woodland into Miombo, Acacia and Mixed subclasses. Being 
available sufficient and up-to-date ground truths for each species, these classes were directly detected in 
the supervised classification. The resulting land cover map was then refined with GPS records of all pans 
and lakes encountered during the fieldworks. The resulting classification is shown in Figure 1 (Detailed 
Land Cover). According to plot samplings and preliminary results from land cover mapping, the 
Miombo-Acacia variability resulted too high to be depicted in a 30x30m pixel. Woodland and Open 
Woodland comprised a mosaic of mixed deciduous trees that could not be easily differentiated from inter-
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seasonal imagery. The classification was reduced to 12 classes as shown in Figure 1 (Generalized Land 
Cover). 

To understand recent habitat changes in the study area, we mapped the extent of change in the 
sensitive CDF habitat through multi-temporal images. The Infrastructure crosses two main areas of CDF 
(Figure 2). Due to the wide difference in vegetation between dry and wet season images, automatic 
change detection methods didn’t work; therefore the CDF extent for each image was estimated trough the 
same classification algorithm used before and the results were compared. Overall, while in the Area 1 
CDF loss was about 20% in 14 years, in Area 2 the total habitat loss was around 75%, mainly in the last 
five years. 

 
Figure 2 – Change Detection Analysis. 

 
Remote sensing was also used to evaluate the potential flood hazard in the area. Available online 

databases were consulted to find flood events records occurred in the study area. The research indicated a 
100years return period flood occurred between January and February 2008. From the Landsat7 image 
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recorded in 2008 February 25th the flood footprint was extracted by exploiting the NDWI. The extension 
was slightly underestimated due to the delay of the image from the main flood wave.  

Lastly we converted the Land Cover classes into the Habitat Status defined by the IFC Performance 
Standards 6. This was based on the characterization by the ecology team of the land cover classes into 
modified, natural and critical habitats as follows: (Figure 1 – Habitat): Modified – Agriculture Bare Soil; 
Natural – Grassland, Woodland, Open Woodland, Mangroves, Sandy Bare Soil, Wetland; Natural – 
Riparian Vegetation; Critical – Coastal Dry Forest. Water (Rivers, Pans) and Settlements were added for 
completeness. 

5 Results  

The classification accuracy assessment was performed using plot samples in 49 locations. The Overall 
Accuracy (OA) and Cohen’s Kappa were extracted for the two land cover classification levels, together 
with the User’s and Producer’s Accuracy (UA, PA) for Woodland and Open Woodland classes (Table 2). 
[10]. Kappa and OA for the detailed classification were 0.76 and 0.72. While for the generalized 
classification they reached 0.90 and 0.92, meaning that more than 90% of the classification was correct. 
These results are affected by the small number validation points. However accuracy assessment estimated 
with 200 randomly generated points provided results higher than 80%. This proved that most of the 
uncertainty in the classification was lying in the subdivision between Miombo and Acacia species. 
 
Table 2 – Producer’s and User’s Accuracies for Woodland (W) and Open Woodland (OW) classes (left). Overall 
Accuracy and Cohen’s Kappa for Detailed and Generalized classifications (Right). 

Class PA UA Class PA UA   Detailed Generalized 
OW Acacia 66.7 66.7 

Open 
Woodland 100 78.6 

 OA 0.76 0.92 
OW Miombo 33.3 50.0  Kappa 0.72 0.90 
OW Mixed 66.7 44.4     
W Acacia 50.0 50.0 

Woodland 75 100 
    

W Miombo 33.3 50.0     
W Mixed 50.0 60.0     

          
Concerning habitat change detection, the estimation of CDF loss demonstrated the effects of 

fragmentation in critical habitats. Area 2 was already crossed in 1999 by a main road acting as access 
route to the forest patch. In 14 years CDF almost disappeared, with a loss of 75%, to the detriment of 
modified habitats. Area 1 did not show any fragmentation, and CDF loss was 20%. This consideration led 
the engineers to evaluate other route alternatives.  

 
Table 3 - Alternative Assessment Based on Remote Sensing Analysis (length %) 

Habitat Type Proposed Layout Alt. 1 Alt. 2 Alt. 3 Alt. 4 
Modified  + Settlements 25.3 41.0 20.3 19.4 33.5 
Natural  51.9 55.0 68.7 73.0 

 
59.1 

Natural – Riparian Vegetation 3.5 0.0 3.1 0.5 2.9 
Critical – Coastal Dry Forest 10.5 0.2 7.7 6.7 1.8 
Flood Length 2008 29.5 19.0 26.8 23.6 27.3 

 
Table 3 shows the aggregated results of the alternative assessment based on the habitat map (detailed 

results for each land cover class are available). The flood extent was also considered in the alternative 
assessment. The original layout resulted to be the most impacting route with 10.5% of its length in CDF, 
and the 3.5 in Riparian Vegetation, which are the most critical habitats in the area. Moreover the 29.5% of 
the entire length was in areas prone to a 100 years return period flooding. 
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6 Conclusion 

Overall, the value of the proposed approach was demonstrated. The study provided harmonized 
Habitat distribution and characterization data for the entire study area. This approach overcame the 
normal constraints of time and budget by optimizing fieldwork efforts. We demonstrated a clear example 
of risks to biodiversity rich forest areas by estimating changes over time of Critical Habitats. Mapping 
flood extents provided a visually accessible representation of flood hazard, asserting remote sensing as a 
powerful source of hydrological data in absence of other sources. The main limitation encountered in 
using remote sensing for habitat mapping was the inability to distinguish woodland types. Overall, the 
derived habitat mapping over 20,000km2 provided invaluable input for confirming the project risks and 
identifying alternative routes to minimize these risks and maintain conservation integrity of the affected 
project area. 
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